

© Les collections de l’INRETS 259

Design of a Modern Image
Generation Engine for Driving

Simulation

Bob Kuehne, Sean Carmody
Blue Newt Software, LLC
201 South Main St. Suite 503, Ann Arbor, MI 48103
rpk@blue-newt.com, sean.carmody@blue-newt.com

Abstract – In 2007 Blue Newt Software began designing and building a new
visual rendering system for visual simulation markets. The image generator,
called PixelTransit, is built on top of our engine called Blue Sprocket. Our
rendering technology has been instrumental in demonstrating to new customers
how graphics hardware can be used not just to create better images, but to gain
better insight into their simulated environments. Blue Sprocket was designed to
address four core goals from a rendering perspective: improved performance,
higher-quality, scalability, and improved lighting. The engine additionally was
redesigned to use standards wherever possible, and to bring a degree of
modularity and scalability not available in this domain. This paper will describe the
design and implementation of this system and discuss current problems and
future work to be done in this space.

Design
We built our rendering technology having analyzed and visualization

requirements with many different customers. A common refrain was that as new
technologies for rendering emerged, customers wanted these advanced graphics
features, but were unable to easily adopt them. These new technologies might be
newer scenegraphs with different rendering techniques, updates to standard
application programming interfaces (APIs) such as OpenGL, or simply the latest
algorithms and research from SIGGRAPH. Regardless of the source, adopting
these technologies was something that each company addressed every few
years to move their simulators forward. We decided a new approach was
necessary to help our customers focus on their domains and let us continuously
refine, revise, and provide new techniques and algorithms for rendering. We do
this through a design which integrates both commercial and open software
components, on all platforms. In short, our strategy is to create long-lived
interfaces, but with flexible underpinnings allowing future enhancement.

Proceedings of the Driving Simulation - Conference Europe 2010

260 © Les collections de l’INRETS

Architecture
We designed and built the Blue Sprocket Engine (BSE), our rendering and

simulation software development kit(SDK) by researching the needs of a variety
of customers in this space and studying the many open-source games APIs
available. We combined our experience with the simulation market with our
research to create an architecture that would allow rapid innovation with stable
interfaces. We created a component-object model in which the simulation end-
user would create logical objects representing simulation entities and their
articulation, then attach components, or ‘viewable’ aspects to those objects.
Viewable components are principally visual, such as 3D models, but can also be
sounds, physics, etc. We provide interfaces to the most common of these
including sound, physics, and of course, our OpenGL-based graphics. These
components are then assigned by the developer to a processing entity we call an
Engine. An engine is a specialized processor for turning components into some
output, typically imagery, sound, or updated state of the world, as in physics
processing. The diagram below shows this overall architecture.

The key architectural decision we made early was to create a simulation
object API in the Blue Sprocket Engine to insulate users from changes lower in
the API stack. We then were able to create separable instances of Engines which
accomplished rendering via various mechanisms. For example, users with the
same simulation software can choose to run in a forward rendering environment
for ultimate speed or a deferred shading environment for lighting with unlimited
numbers of lights. That choice, however, can be made based on the needs of the
particular simulation run, and does not constrain the user to only developing their
application for one or the other. Mitigating the pain of moving from one rendering
interface to another was the key goal of the design of the Blue Sprocket Engine.

Engines are the workhorse of our system, and are individually responsible for
two components of how a user creates a simulation. First, they provide
components, which are attached to the user Object hierarchy that they describe
their simulation world with. Second, engines provide processing capabilities to
turn the components that they’re managing into some coherent view. The most
common view of this is the Graphics Engine which turns Graphics Components
containing geometry and rendering state into an image.

Blue Sprocket Engine

Graphics Engine

Deferred Forward IrrKlang OpenAL Havok PhysX

Sound Engine Physics Engine

User Application (C++/Python)

Design of a Modern Image Generation Engine for Driving Simulation

© Les collections de l’INRETS 261

Platform
We began developing our technology with the choice of hardware platform on

which to deploy. Based on our experience, we knew many customers had
existing Windows installations, however, we wanted to move beyond Windows to
ensure both higher code quality, and preserve options for our customers. That
decision meant that our tools and code had to be fully cross-platform. This choice
of platform directly leads to decisions about which technologies we integrate.
Today we build and deploy on 64-bit Windows, Linux, and Mac OS X7. This lets
our developers and customers both work where they’re most productive. Beyond
that simple business necessity, we also catch many potential problems early due
to compiler differences among vendors.

Technologies
Our core product focus is clear: to choose and integrate technologies that

provide our customers value, while giving those customers programming
interfaces which will remain stable, over a highly flexible and high-performance
rendering core which can be used to build engines for today’s and tomorrow’s
hardware platforms. This guiding principle informs how we choose among
technologies to integrate, build-upon, and deploy.

Given limited resources with which to develop a product, we’re always faced
with choices about whether to build vs buy technologies. Our core system
integrates a variety of commercial external components such as SpeedTree,
DIGuy, and more, but also have many open-source components to our system
such as Python (scripting), Boost (algorithms, threads, networking), and Bullet
(physics). We rely on a rich data import/export toolchain via OpenSceneGraph,
however, we expressly do not use any of its rendering capabilities. Having
worked with OpenSceneGraph since its inception in 2000, we’ve found that it’s
very good for data reading/writing and geometry manipulation, but it’s rendering is
designed for GPUs from a generation ago. This meant we had to take another
direction for our graphics engine and so we focused on pure OpenGL 3.3
rendering. We chose OpenGL on over other graphics technology for several
reasons. First, OpenGL works on all platforms, from handhelds to desktops,
independently of OS. Second, OpenGL has a rich extension mechanism, allowing
vendors to expose unique hardware-specific capabilities easily. We use this to
gain access to useful vendor features for advanced capabilities such as shader-
controlled multisampling. Third, OpenGL is very close to the metal, allowing us to
get as close to the absolute maximum performance as possible on a given GPU.

The Image Generator
In conjunction with development of our simulation engine core, we set about

building an application on top of it, an Image Generator (IG) for driving simulation
we call PixelTransit. Our focus was to keep the application as simple as possible,
and write it the way a customer would write their own application to our engine,
Blue Sprocket. This approach allowed us to accomplish the key goal we needed

7 OS X lags OpenGL versions at this point. We handle compatibility through OpenGL extensions.

Proceedings of the Driving Simulation - Conference Europe 2010

262 © Les collections de l’INRETS

for one of our most challenging customers - build a new high-performance IG
platform on a relatively new commodity graphics hardware GPU. We needed to
be able to build the application logic once, but be able to change the graphics
rendering underneath as the performance characteristics and quirks of the
platform guided us in certain directions and away from others.

This architecture of our Blue Sprocket Engine turned out to be crucial while
building the PixelTransit IG. Many times during the process of building the IG, we
discovered performance bottlenecks in specific stages of both deferred rendering
engine. These were either algorithmic or hardware, but in either case, we needed
to rapidly iterate our design. We were able to work around particular problems
within several graphics rendering pipelines by applying different deferred
rendering techniques, but able to keep the core IG application structure the same.

Our Image Generation platform is compatible with either commodity
synchronization solution from either NVIDIA or ATI. These allow frame frame-
accurate double-buffering of graphics and GenLock within a frame. For the most
part, commodity hardware is a very good choice for a modern platform, however,
there are definitely tradeoffs as vendors have moved from a deep integration of
hardware, including GPU, to a more integrator/assembly process. We discovered
timing quirks due to various OS and hardware interactions on various platforms,
necessitating rework several times as platform specifics changed slightly. COTS
hardware is very wallet-friendly, but the tradeoff between up-front costs tends to
get paid back in software-development time, especially as very timing-critical and
bandwidth-stressing operations occur in an application.

The IG networking is built off common components. We use the highly-
threaded Boost library to handle asynchronous unicast and multicast network
data processing. Boost allows rapid development with a modern, fully C++, peer-
reviewed, and open networking stack. We created our own thin packet format for
packaging up data and sending it to/from the IGs. One design decision which we
made early in the system was that we needed to be able to create data packets
and send them from a variety of sources. We wanted to be able to write
simulations in Python or in C++ when necessary, so all our data packets have
interfaces in both. We begin by writing APIs in C++ and wrapping them in Python.
Our system test infrastructure is built in Python atop these wrapped APIs,
allowing us to rapidly both test and develop custom capabilities.

The Graphics Engine
Early in our development process we thought we’d build our graphics

capabilities on standard open-source APIs with which we had extensive
experience. As we worked further through our process, various limitations
became not just performance-limiting to our end goals, but completely blocked
our progress with our primary goal of creating a fully deferred, unlimited-light
capable image generator. Shortly thereafter we started development on the
current shipping Graphics Engine for the Blue Sprocket Engine. The technologies
behind this engine will be detailed next along with a coarse overview of deferred
rendering.

Design of a Modern Image Generation Engine for Driving Simulation

© Les collections de l’INRETS 263

The goal of our system was to be able to render hundreds of real in-scene
lights at a time. We wanted our launch partner to be able to see actual live lights
for all vehicles on-scene, and see dramatically improved lighting in urban settings
at night. We quickly narrowed in on the class of techniques known as deferred
rendering. Deferred rendering is a style of rendering in which you defer as much
of the most expensive rendering workload as long as possible. In many
simulations, this expensive work is typically the work that goes into shading pixels
and fragments. In a pathologically good case, deferred rendering can mean that
you only ever perform lighting and advanced material rendering once per-visible
pixel (or per-fragment, if multisampling.) We chose to adapt some of the common
deferred techniques to do full floating-point math, end-to-end in our pipeline, then
applying a variety of post-processing effects to those floating-point values to re-
range them to displayable ranges, and apply effects such as bloom, blur, and
depth-of-field.

A user, in this case our graphics team, decides on an algorithm with which
they’d like to render results. In our case, this was a floating-point deferred pipeline
with post-processing. A user breaks down the tasks into a variety of rendering
Passes and combines these through wiring texture outputs to inputs for
subsequent stages. We’ll presume for the next paragraphs that this pipeline has
been assembled and walk through how user data flows through it. A simplified
version of the deferred pipeline is represented below.

Our engine begins by taking the user Graphics Components and culling them
for visibility. We developed a standalone threaded culling infrastructure so we
would have flexibility in how objects were culled. Users directly insert objects to
be rendered into Cull Graphs which are then responsible for computing a visible
set of results each frame. Cullers are threaded using platform-native threads.
Once a culler produces results, we then pass it along to a second set of threaded
sort and optimize tasks which order results for rendering. On modern hardware it
is particularly important to ensure that like objects are rendered together, to
reduce expensive state changes in the hardware. Further, in a modern rendering
pipeline, objects contributing to a scene are typically rendered twice or more
depending on how many shadow maps, reflection maps, and depth passes are
contributing to the scene. For these reasons, culling, sorting, and optimizing those
results for display is very important to do effectively and efficiently.

After we’ve computed results from a variety of cullers, we pass those results to
various rendering Passes which produce one or several textures as output. This
chain of rendering passes together is known as a Renderer. A Renderer
embodies a particular technique for rendering such as deferred rendering,
forward rendering, light-pre-pass rendering, etc. Renderers can be relatively

Shadow Passes

1 …

Depth & Normal Pass

Lighting

Material Assembly PostPasses

Proceedings of the Driving Simulation - Conference Europe 2010

264 © Les collections de l’INRETS

easily interchanged, and user code remains effectively unchanged, with only
minor tweaks to end-user materials to take advantage of specific Renderer
features.

Renderer passes may be ordered or may be independent, allowing for coarse-
threading by combining results on multiple graphics cards. This latter goal,
however, remains a difficult task to do well. Core problems in this space remain
with low-latency data retrieval and resubmission across graphics hardware. We
are hopeful that future generations of graphics cards and APIs will allow better
memory and framebuffer access across multiple cards. In the specific case of a
deferred rendering pipeline, one could compute the transparent and opaque
passes in parallel on separate cards prior to submission of both to the Material
Assembly pass.

Finally, after a Renderer has completed it’s overall scene work, a series of
post-processing passes may be performed. In our deferred renderer, for example,
we’ve chosen to compute screen-space fog, water, and snow effects based on
depth results, resulting in a very inexpensive fragment operation as these operate
only once per-pixel.

Results
Our overall architecture provided benefits almost immediately in that we were

able to rapidly iterate our designs. However, for our end-customers are results are
significantly more valuable. We’ll focus on two aspects which allow our customers
to derive immediate benefit, in terms of scalability, performance, and capability.
These are rapid development of unique features based on our pipeline
architecture, and second, dynamic performance tuning based on this same
pipeline architecture.

In 2007 we developed capability for true light-lobe rendering for a client. This
allowed the client to project arbitrarily-shaped spot lights into a scene and use
those in actual experiments surrounding headlight design. Our deferred renderer
extends this work to allow effectively unlimited numbers of spot and point lights in
a scene. Each spot light can have an arbitrary shape, which means that
customers can have hundreds of true-light-lobes active in a scene at any given
moment. Each light interacts with the world every frame. That means that not just
static objects are lit, but dynamic objects as well.

A related benefit to our customers is the ability to scale performance and
quality. In deferred rendering, the performance of the lighting solution directly
corresponds to the number of pixels in the final image that are lit. This gives direct
control to customers to decide how much lighting realism they desire in any
scene, and scale their performance proportionally. So as future hardware with
more shader performance arrives, customers can directly create more lights and
see improved quality, or simply keep the same number of lights and have
performance improve. We strive wherever possible to expose this
performance/quality control directly.

Shadows also benefit from this performance/quality control. Our engine was
built to allow rapid assembly of multiple rendering passes into an overall

Design of a Modern Image Generation Engine for Driving Simulation

© Les collections de l’INRETS 265

rendering pipeline. In our deferred pipeline, for example, users can have between
1 and 4 shadow maps computed in a directional light shadow pass. This means
that as users need more quality, they can add extra shadow maps. However,
we’ve extended this baseline scalability with further controls for users. Shadow
resolution can be scaled up or down to improve quality or performance. Further,
the number of samples used in filtering the shadows can be increased or
decreased creating softer or harder shadows respectively. With creative use of
vendor-specific multi-tap sample gathering we can create soft shadows with
kernels from 9-25 taps per-result-pixel on screen.

Our engine exposes a few more of these knobs today (post-processing
quality, etc) and will expose more in the future. In general we believe this is a very
important way to allow customers to ‘self-upgrade’ as they have requirements or
experiments to run which require either more performance or more realism. We
believe that the graphics simulation world is only getting more complex and
realistic, and customers will require ever-more control to fine-tune their simulation
for their specific simulation, hardware, and experiment needs.

Conclusion
In this paper we’ve described our ground-up development of the PixelTransit

IG and the Blue Sprocket Engine for simulation development. Our goal was to
design a system that would be easy to maintain by insulating the details of
modern graphics from the development of the IG features a modern simulator
requires. We have an implementation which is high-dynamic range, fully deferred
rendering, unlimited lights, yet with transparency, and anti-aliasing – two difficult
tasks for deferred rendering. We approached the task by a rigorous study of the
best practices from the games industry combined with the exacting requirements
for controllability and quality from the simulation world. We did this by creating a
layered architecture which allows rapid development of simulator-specific logic
and features, but still allowing efficient evolution of underlying graphics rendering
techniques.

Appendix: Reference Images
The images in this section show a variety of effects possible within our flexible

pipeline. We demonstrate the dramatic differences in looks for a single car at
different times of day, with detailed light modeling. We also show images
demonstrating many real-time in-scene lights. Our poster will show more image
data, results, detailed antialiasing steps, and live results.

Proceedings of the Driving Simulation - Conference Europe 2010

266 © Les collections de l’INRETS

