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Abstract – In 2007 Blue Newt Software began designing and building a new 
visual rendering system for visual simulation markets. The image generator, 
called PixelTransit, is built on top of our engine called Blue Sprocket. Our 
rendering technology has been instrumental in demonstrating to new customers 
how graphics hardware can be used not just to create better images, but to gain 
better insight into their simulated environments. Blue Sprocket was designed to 
address four core goals from a rendering perspective: improved performance, 
higher-quality, scalability, and improved lighting. The engine additionally was 
redesigned to use standards wherever possible, and to bring a degree of 
modularity and scalability not available in this domain. This paper will describe the 
design and implementation of this system and discuss current problems and 
future work to be done in this space. 

Design 
We built our rendering technology having analyzed and visualization 

requirements with many different customers. A common refrain was that as new 
technologies for rendering emerged, customers wanted these advanced graphics 
features, but were unable to easily adopt them. These new technologies might be 
newer scenegraphs with different rendering techniques, updates to standard 
application programming interfaces (APIs) such as OpenGL, or simply the latest 
algorithms and research from SIGGRAPH. Regardless of the source, adopting 
these technologies was something that each company addressed every few 
years to move their simulators forward. We decided a new approach was 
necessary to help our customers focus on their domains and let us continuously 
refine, revise, and provide new techniques and algorithms for rendering. We do 
this through a design which integrates both commercial and open software 
components, on all platforms. In short, our strategy is to create long-lived 
interfaces, but with flexible underpinnings allowing future enhancement. 
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Architecture 
We designed and built the Blue Sprocket Engine (BSE), our rendering and 

simulation software development kit(SDK) by researching the needs of a variety 
of customers in this space and studying the many open-source games APIs 
available. We combined our experience with the simulation market with our 
research to create an architecture that would allow rapid innovation with stable 
interfaces. We created a component-object model in which the simulation end-
user would create logical objects representing simulation entities and their 
articulation, then attach components, or ‘viewable’ aspects to those objects. 
Viewable components are principally visual, such as 3D models, but can also be 
sounds, physics, etc. We provide interfaces to the most common of these 
including sound, physics, and of course, our OpenGL-based graphics. These 
components are then assigned by the developer to a processing entity we call an 
Engine. An engine is a specialized processor for turning components into some 
output, typically imagery, sound, or updated state of the world, as in physics 
processing. The diagram below shows this overall architecture. 

 

The key architectural decision we made early was to create a simulation 
object API in the Blue Sprocket Engine to insulate users from changes lower in 
the API stack. We then were able to create separable instances of Engines which 
accomplished rendering via various mechanisms. For example, users with the 
same simulation software can choose to run in a forward rendering environment 
for ultimate speed or a deferred shading environment for lighting with unlimited 
numbers of lights. That choice, however, can be made based on the needs of the 
particular simulation run, and does not constrain the user to only developing their 
application for one or the other. Mitigating the pain of moving from one rendering 
interface to another was the key goal of the design of the Blue Sprocket Engine. 

Engines are the workhorse of our system, and are individually responsible for 
two components of how a user creates a simulation. First, they provide 
components, which are attached to the user Object hierarchy that they describe 
their simulation world with. Second, engines provide processing capabilities to 
turn the components that they’re managing into some coherent view. The most 
common view of this is the Graphics Engine which turns Graphics Components 
containing geometry and rendering state into an image. 

Blue Sprocket Engine 

Graphics Engine 

Deferred Forward IrrKlang OpenAL Havok PhysX 

Sound Engine Physics Engine 

User Application (C++/Python) 



Design of a Modern Image Generation Engine for Driving Simulation 
 

© Les collections de l’INRETS  261 

Platform 
We began developing our technology with the choice of hardware platform on 

which to deploy. Based on our experience, we knew many customers had 
existing Windows installations, however, we wanted to move beyond Windows to 
ensure both higher code quality, and preserve options for our customers. That 
decision meant that our tools and code had to be fully cross-platform. This choice 
of platform directly leads to decisions about which technologies we integrate. 
Today we build and deploy on 64-bit Windows, Linux, and Mac OS X7. This lets 
our developers and customers both work where they’re most productive. Beyond 
that simple business necessity, we also catch many potential problems early due 
to compiler differences among vendors. 

Technologies 
Our core product focus is clear: to choose and integrate technologies that 

provide our customers value, while giving those customers programming 
interfaces which will remain stable, over a highly flexible and high-performance 
rendering core which can be used to build engines for today’s and tomorrow’s 
hardware platforms. This guiding principle informs how we choose among 
technologies to integrate, build-upon, and deploy. 

Given limited resources with which to develop a product, we’re always faced 
with choices about whether to build vs buy technologies. Our core system 
integrates a variety of commercial external components such as SpeedTree, 
DIGuy, and more, but also have many open-source components to our system 
such as Python (scripting), Boost (algorithms, threads, networking), and Bullet 
(physics). We rely on a rich data import/export toolchain via OpenSceneGraph, 
however, we expressly do not use any of its rendering capabilities. Having 
worked with OpenSceneGraph since its inception in 2000, we’ve found that it’s 
very good for data reading/writing and geometry manipulation, but it’s rendering is 
designed for GPUs from a generation ago. This meant we had to take another 
direction for our graphics engine and so we focused on pure OpenGL 3.3 
rendering. We chose OpenGL on over other graphics technology for several 
reasons. First, OpenGL works on all platforms, from handhelds to desktops, 
independently of OS. Second, OpenGL has a rich extension mechanism, allowing 
vendors to expose unique hardware-specific capabilities easily. We use this to 
gain access to useful vendor features for advanced capabilities such as shader-
controlled multisampling. Third, OpenGL is very close to the metal, allowing us to 
get as close to the absolute maximum performance as possible on a given GPU. 

The Image Generator 
In conjunction with development of our simulation engine core, we set about 

building an application on top of it, an Image Generator (IG) for driving simulation 
we call PixelTransit. Our focus was to keep the application as simple as possible, 
and write it the way a customer would write their own application to our engine, 
Blue Sprocket. This approach allowed us to accomplish the key goal we needed 

                                                      
7 OS X lags OpenGL versions at this point. We handle compatibility through OpenGL extensions. 
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for one of our most challenging customers - build a new high-performance IG 
platform on a relatively new commodity graphics hardware GPU. We needed to 
be able to build the application logic once, but be able to change the graphics 
rendering underneath as the performance characteristics and quirks of the 
platform guided us in certain directions and away from others. 

This architecture of our Blue Sprocket Engine turned out to be crucial while 
building the PixelTransit IG. Many times during the process of building the IG, we 
discovered performance bottlenecks in specific stages of both deferred rendering 
engine. These were either algorithmic or hardware, but in either case, we needed 
to rapidly iterate our design. We were able to work around particular problems 
within several graphics rendering pipelines by applying different deferred 
rendering techniques, but able to keep the core IG application structure the same. 

Our Image Generation platform is compatible with either commodity 
synchronization solution from either NVIDIA or ATI. These allow frame frame-
accurate double-buffering of graphics and GenLock within a frame. For the most 
part, commodity hardware is a very good choice for a modern platform, however, 
there are definitely tradeoffs as vendors have moved from a deep integration of 
hardware, including GPU, to a more integrator/assembly process. We discovered 
timing quirks due to various OS and hardware interactions on various platforms, 
necessitating rework several times as platform specifics changed slightly. COTS 
hardware is very wallet-friendly, but the tradeoff between up-front costs tends to 
get paid back in software-development time, especially as very timing-critical and 
bandwidth-stressing operations occur in an application. 

The IG networking is built off common components. We use the highly-
threaded Boost library to handle asynchronous unicast and multicast network 
data processing. Boost allows rapid development with a modern, fully C++, peer-
reviewed, and open networking stack. We created our own thin packet format for 
packaging up data and sending it to/from the IGs. One design decision which we 
made early in the system was that we needed to be able to create data packets 
and send them from a variety of sources. We wanted to be able to write 
simulations in Python or in C++ when necessary, so all our data packets have 
interfaces in both. We begin by writing APIs in C++ and wrapping them in Python. 
Our system test infrastructure is built in Python atop these wrapped APIs, 
allowing us to rapidly both test and develop custom capabilities. 

The Graphics Engine 
Early in our development process we thought we’d build our graphics 

capabilities on standard open-source APIs with which we had extensive 
experience. As we worked further through our process, various limitations 
became not just performance-limiting to our end goals, but completely blocked 
our progress with our primary goal of creating a fully deferred, unlimited-light 
capable image generator. Shortly thereafter we started development on the 
current shipping Graphics Engine for the Blue Sprocket Engine. The technologies 
behind this engine will be detailed next along with a coarse overview of deferred 
rendering. 
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The goal of our system was to be able to render hundreds of real in-scene 
lights at a time. We wanted our launch partner to be able to see actual live lights 
for all vehicles on-scene, and see dramatically improved lighting in urban settings 
at night. We quickly narrowed in on the class of techniques known as deferred 
rendering. Deferred rendering is a style of rendering in which you defer as much 
of the most expensive rendering workload as long as possible. In many 
simulations, this expensive work is typically the work that goes into shading pixels 
and fragments. In a pathologically good case, deferred rendering can mean that 
you only ever perform lighting and advanced material rendering once per-visible 
pixel (or per-fragment, if multisampling.) We chose to adapt some of the common 
deferred techniques to do full floating-point math, end-to-end in our pipeline, then 
applying a variety of post-processing effects to those floating-point values to re-
range them to displayable ranges, and apply effects such as bloom, blur, and 
depth-of-field. 

A user, in this case our graphics team, decides on an algorithm with which 
they’d like to render results. In our case, this was a floating-point deferred pipeline 
with post-processing. A user breaks down the tasks into a variety of rendering 
Passes and combines these through wiring texture outputs to inputs for 
subsequent stages. We’ll presume for the next paragraphs that this pipeline has 
been assembled and walk through how user data flows through it. A simplified 
version of the deferred pipeline is represented below. 

 

Our engine begins by taking the user Graphics Components and culling them 
for visibility. We developed a standalone threaded culling infrastructure so we 
would have flexibility in how objects were culled. Users directly insert objects to 
be rendered into Cull Graphs which are then responsible for computing a visible 
set of results each frame. Cullers are threaded using platform-native threads. 
Once a culler produces results, we then pass it along to a second set of threaded 
sort and optimize tasks which order results for rendering. On modern hardware it 
is particularly important to ensure that like objects are rendered together, to 
reduce expensive state changes in the hardware. Further, in a modern rendering 
pipeline, objects contributing to a scene are typically rendered twice or more 
depending on how many shadow maps, reflection maps, and depth passes are 
contributing to the scene. For these reasons, culling, sorting, and optimizing those 
results for display is very important to do effectively and efficiently. 

After we’ve computed results from a variety of cullers, we pass those results to 
various rendering Passes which produce one or several textures as output. This 
chain of rendering passes together is known as a Renderer. A Renderer 
embodies a particular technique for rendering such as deferred rendering, 
forward rendering, light-pre-pass rendering, etc. Renderers can be relatively 

Shadow Passes 

1 … 

Depth & Normal Pass 

Lighting 

Material Assembly PostPasses 
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easily interchanged, and user code remains effectively unchanged, with only 
minor tweaks to end-user materials to take advantage of specific Renderer 
features. 

Renderer passes may be ordered or may be independent, allowing for coarse-
threading by combining results on multiple graphics cards. This latter goal, 
however, remains a difficult task to do well. Core problems in this space remain 
with low-latency data retrieval and resubmission across graphics hardware. We 
are hopeful that future generations of graphics cards and APIs will allow better 
memory and framebuffer access across multiple cards. In the specific case of a 
deferred rendering pipeline, one could compute the transparent and opaque 
passes in parallel on separate cards prior to submission of both to the Material 
Assembly pass. 

Finally, after a Renderer has completed it’s overall scene work, a series of 
post-processing passes may be performed. In our deferred renderer, for example, 
we’ve chosen to compute screen-space fog, water, and snow effects based on 
depth results, resulting in a very inexpensive fragment operation as these operate 
only once per-pixel. 

Results 
Our overall architecture provided benefits almost immediately in that we were 

able to rapidly iterate our designs. However, for our end-customers are results are 
significantly more valuable. We’ll focus on two aspects which allow our customers 
to derive immediate benefit, in terms of scalability, performance, and capability. 
These are rapid development of unique features based on our pipeline 
architecture, and second, dynamic performance tuning based on this same 
pipeline architecture. 

In 2007 we developed capability for true light-lobe rendering for a client. This 
allowed the client to project arbitrarily-shaped spot lights into a scene and use 
those in actual experiments surrounding headlight design. Our deferred renderer 
extends this work to allow effectively unlimited numbers of spot and point lights in 
a scene. Each spot light can have an arbitrary shape, which means that 
customers can have hundreds of true-light-lobes active in a scene at any given 
moment. Each light interacts with the world every frame. That means that not just 
static objects are lit, but dynamic objects as well. 

A related benefit to our customers is the ability to scale performance and 
quality. In deferred rendering, the performance of the lighting solution directly 
corresponds to the number of pixels in the final image that are lit. This gives direct 
control to customers to decide how much lighting realism they desire in any 
scene, and scale their performance proportionally. So as future hardware with 
more shader performance arrives, customers can directly create more lights and 
see improved quality, or simply keep the same number of lights and have 
performance improve. We strive wherever possible to expose this 
performance/quality control directly. 

Shadows also benefit from this performance/quality control. Our engine was 
built to allow rapid assembly of multiple rendering passes into an overall 
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rendering pipeline. In our deferred pipeline, for example, users can have between 
1 and 4 shadow maps computed in a directional light shadow pass. This means 
that as users need more quality, they can add extra shadow maps. However, 
we’ve extended this baseline scalability with further controls for users. Shadow 
resolution can be scaled up or down to improve quality or performance. Further, 
the number of samples used in filtering the shadows can be increased or 
decreased creating softer or harder shadows respectively. With creative use of 
vendor-specific multi-tap sample gathering we can create soft shadows with 
kernels from 9-25 taps per-result-pixel on screen. 

Our engine exposes a few more of these knobs today (post-processing 
quality, etc) and will expose more in the future. In general we believe this is a very 
important way to allow customers to ‘self-upgrade’ as they have requirements or 
experiments to run which require either more performance or more realism. We 
believe that the graphics simulation world is only getting more complex and 
realistic, and customers will require ever-more control to fine-tune their simulation 
for their specific simulation, hardware, and experiment needs. 

Conclusion 
In this paper we’ve described our ground-up development of the PixelTransit 

IG and the Blue Sprocket Engine for simulation development. Our goal was to 
design a system that would be easy to maintain by insulating the details of 
modern graphics from the development of the IG features a modern simulator 
requires. We have an implementation which is high-dynamic range, fully deferred 
rendering, unlimited lights, yet with transparency, and anti-aliasing – two difficult 
tasks for deferred rendering. We approached the task by a rigorous study of the 
best practices from the games industry combined with the exacting requirements 
for controllability and quality from the simulation world. We did this by creating a 
layered architecture which allows rapid development of simulator-specific logic 
and features, but still allowing efficient evolution of underlying graphics rendering 
techniques. 

Appendix: Reference Images 
The images in this section show a variety of effects possible within our flexible 

pipeline. We demonstrate the dramatic differences in looks for a single car at 
different times of day, with detailed light modeling. We also show images 
demonstrating many real-time in-scene lights. Our poster will show more image 
data, results, detailed antialiasing steps, and live results. 
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