
Driving Simulation Conference 2012 Autonomous Local Manoeuvre and Scenario Orchestration

Paper Number -1- DSC’12

Autonomous Local Manoeuvre and Scenario
Orchestration Based on Automated Action Planning

in Driving Simulation

Zhitao Xiong1, Anthony G. Cohn 2, Oliver Carsten 3, Hamish Jamson 3
(1) Institute for Transport Studies and School of Computing, 38 University Road, University of Leeds, Leeds, UK,

LS2 9JT, E-mail: tszx@leeds.ac.uk
(2) School of Computing, University of Leeds, Leeds, UK, LS2 9JT, E-mail: a.g.cohn@leeds.ac.uk
(3) Institute for Transport Studies, 38 University Road, University of Leeds, Leeds, UK, LS2 9JT,

O.M.J.Carsten@its.leeds.ac.uk, A.H.Jamson@its.leeds.ac.uk
Abstract – Techniques for orchestrating scenarios with autonomous vehicles in driving simulation are not
abundant and three problems are still open: Actor Management, Actor Preparation and Scenario Orchestration.
Moreover, “failures” still happen in scenarios. In this paper, a decision-making algorithm based on automated
action planning called NAUSEA(autoNomous locAl manoeUvre and Scenario orchEstration based on automated
action plAnning) is proposed for the cognitive layer of a driver model called SAIL (Scenario-Aware drIver modeL).
Autonomous drivers equipped with SAIL/NAUSEA can make decisions according to their memories of scenario
instructions and personal features (e.g., personalities), so as to make their controlling vehicles not only follow the
scenario requirements and perform pre-defined actions, but also tolerate interferences and endow the scenario
with rich behaviours as permitted. An experiment was used to evaluate NAUSEA and its implementation. It shows
that NAUSEA is working properly but the implementation needs improvement.

Key words: Scenario Orchestration, Driving Simulation, Automated Planning, Temporal Reasoning

1. Introduction
In driving simulation, a scenario1 is a pre-defined environment that experimenters need a participant or simulator
driver to experience; it includes the physical scenes, pre-defined traffic flow, interactions with other vehicles and
measures that need to be collected. There are two basic requirements regarding scenarios: 1) the simulated
vehicles in driving simulation should behave in a natural and realistic manner and 2) the scenario in the driving
simulation should be reproducible. Researchers always put a focus on the second requirement and materials about
how to satisfy the two requirements in the meantime are still not rich, that is, the following three questions are still
open: 1) Which vehicles should interact with the participant? (Actor management problem); 2) How should those
vehicles go to their proposed position? (Actor preparation problem) and 3) How should those vehicles be instructed
what to do when interacting with participants? (Scenario orchestration problem).

In [Kea1], an actor manager was included in their HTPS-based architecture but no detail of actor management
was mentioned. In [Ols1], Johan Olstam discussed the actor preparation and actor management problems with a
focus on producing reproducible start conditions of plays in his algorithm. In [Pap1], autonomous vehicles can be
directed to perform specific actions by receiving orders from an external director object, in which case humans
handle scenario orchestration and scenarios may fail, e.g., the vehicle fails to follow the scenario instructions of
overtaking because of some trigger failure and the whole scenario may be destroyed.

In order to find a solution for the three problems above and deal with failures, a “The Matrix” metaphor has
been taken to design a driver model for driving simulation (see [The1] for a description of the film trilogy “The
Matrix”). In short, this research separates the (virtual) driver from the vehicles. Drivers are treated as “Agent Smith”
[Age1], and vehicles in the simulation are treated as “simulated humans” in “The Matrix” (at least one of them is
driven by a participant). More details about this metaphor can be found in [Xio1]. A driver model called SAIL
(Scenario-Aware drIver modeL) is therefore proposed to create a (virtual) driver that can:

1) Take control of one vehicle or a flock of vehicles dynamically by using Role Matching (solution to problem 1
and in section 2.2);

1 In driving simulation literature, terms may have different meanings, e.g., “scenario”, so in this paper/research terms are defined
in order to be consistent and unified, not to be accurate. The Ontology for Scenario Orchestration mentioned later is trying to
standardize the definitions and scenarios among different groups and different platforms.

Driving Simulation Conference 2012 Autonomous Local Manoeuvre and Scenario Orchestration

Paper Number -2- DSC’12

2) Understand the scenario instructions and navigate any vehicles to the proposed Formation 2 Position
needed for the scenario (solution to problem 2 and in section 2.3);

3) Follow the scenario instructions intelligently with a general plan and the ability of replanning in order to deal
with failures (solution to problem 3 and in section 2.1) and

4) Cooperate with other (virtual) drivers so several drivers can run in parallel and coordinate.

SAIL uses OSO (Ontology for Scenario Orchestration) [Xio1] as its data source, which is stored in SDF
(Scenario Definition File). OSO can also standardize scenario procedures, descriptions and concepts. SAIL uses
an algorithm called NAUSEA (autoNomous locAl manoeUvre and Scenario orchEstration based on automated
action plAnning) to make decisions. SAIL and NAUSEA have been implemented in a program called Smith. The
vehicle or flock Smith is controlling are termed as “ego-vehicle” or “ego-flock” respectively.

This paper will introduce NAUSEA in SAIL including an experiment and results. It is organised as follows:
Section 2 will first have a description of NAUSEA followed by Section 3 that is dedicated to show the experiment
and results. Section 4 will include a conclusion and a discussion about future research and enhancement.

2. Algorithm Description - NAUSEA
SAIL is derived from ECOM architecture [Eng1] and illustrated in Fig. 1. The Perception layer is used to sense the
outside environment and make necessary interpretation. The Cognition layer is used to maintain Memory and
make decisions. Memory includes the Individual Features (e.g., personalities) and the World Model (e.g., the
logical road network, previous Memory of World Model etc.). More details about SAIL can be found in [Xio1].
NAUSEA is based on temporal reasoning proposed in [Had1] and works in the Decision-Making layer in the
Cognition (see Fig. 1). In order to adopt not only the temporal constraints3 but also triggers including monitors (pre-
conditions), success conditions (post-condition) and failure conditions(post-condition), extra procedures have been
added. NAUSEA is described in Fig. 2 and procedures of Plan Evaluation, Role Matching and Regulating are
elaborated as follows:

2.1 Plan Evaluation Procedure
NAUSEA maintains a General Plan Grα to guide Smith through a scenario. Before introducing Grα and its
evaluation procedure, three concepts are given first: Action, Assignment and Recipe.
 An Action can be an Assignment-action or a pre-defined action described in the next paragraph: α, β0, β1, β2
and β3. It can be a High-Level Action or a Low-Level Action4 (which are complex action and basic action in [Had1]
respectively; the names have been changed in order to reflect the hierarchical architecture of SAIL). Each action is
associated with the following parameters: ID, d, D, r, s, f. ID represents the name/id of the ego-vehicle/flock. d
represents the deadline of the action. D represents the duration of the action. r represents the release time of the
action. s and f represent the start time and finish time of the action. Moreover, each action has a type and an action
profile, e.g., “change desired speed to 10 mph” is an Assignment-action whose type is “Low-Level” and “Adapt-
Speed” and whose action profile is “Desired Speed” with a value of “10.0” (mph).
 Assignments are stored as Motivations in the Memory layer and specify what Smith needs to do in a scenario.
An Assignment has four main components: monitors, success conditions, failure conditions and Assignment-
actions. Monitors are used to trigger the corresponding Assignment-actions and success/failure conditions are
used to check if the Assignment-actions have succeeded or failed respectively. Assignment-actions are what Smith
should do in scenarios and can be driving behaviours or non-driving behaviours such as “request new vehicle”, etc.

In every scenario, each Smith needs to finish a top High-Level Action α that can be either Perform-scenario
or Free. Free makes Smith ignore any Assignment and autonomously navigate the world, in which case route or a
destination will be randomly chosen. Perform-scenario has only one Recipe5 that contains four sub-actions,
namely, β0, β1, β2 and β3 (Fig. 4). β0 (Get-to-the-initial-state) adopts initial state (e.g., initial speed, initial target
speed etc.). β1 (Generate-formation) means that Smith should “drive” the ego-vehicle(s) to the proposed Formation
Position in an unsuspicious manner [Ols1] in order to perform the corresponding Assignment-actions, which is the
process called Autonomous Local Manoeuvre in NAUSEA. Because the recipe of β1 will change according to the
dynamic environment, this action will not be further divided into sub-actions, but it will be monitored throughout the
scenario in order to make sure that the ego-vehicle(s) can get to the position in time or on time. β2 means Perform-
assignment Action, and can be further divided into several Assignment-actions, which are represented as γ0

2
 A Formation is a set of pre-defined local positions around the simulator driver/participant. Vehicles in driving simulation always

interact with the participants at these Formation Positions. See figure 3 for further information.
3
 They include metric and precedence constraints, e.g., “action α Before action β” is a precedence constraint and “the start

time of β – the finish time of α ≤ 100 (seconds)” is a metric constraint. Details can be found in [Had1].
4
 A Low-level action is defined as an action that can be only performed in one way, one sequence and by one vehicle/flock.

5
 A Recipe is a set of actions that specifies how to perform a complex/High-Level Action. Recipe is a term borrowed from [Had1].

Driving Simulation Conference 2012 Autonomous Local Manoeuvre and Scenario Orchestration

Paper Number -3- DSC’12

through γn (n is the number of Assignment-actions a Smith needs to perform). Each Assignment-action (γ0 through
γn) is contained in the Assignments stored in Memory. β3 (Clean-up) should be specified by experimenters as an
Assignment-action in most circumstances; however, it can be an autonomous action by changing it to the top-
action of Free. At present, Smith always ignores Clean-up/β3 and Get-to-the-initial-state/β0 when constructing or
evaluating Grα.

By using the start time s and finish time f of every action in the recipe of Perform-scenario, Smith, or
specifically, NAUSEA can generate a General Plan in Memory - a temporal constraint graph Grα [Had1], so s and f
are represented as nodes in the graph Grα. The plan evaluation procedure uses the Floyd-Warshall algorithm to
check the consistency of Grα, which is to check if there is any conflict regarding temporal constraints. When Smith
is making decision and trying to finish the Assignment-actions specified in β2, it may change: 1) performer(s) of the
action (ID of the ego-vehicle/flock); 2) Assignment-actions and 3) the action Recipe of β1. Change of performer(s)
may lead to the change of temporal constraints if permitted. Change of Assignment-actions will lead to the change
of the temporal constraints and nodes in Grα. Change of the action Recipe of β1 is caused by any failure in β2 and
Smith may need to navigate the ego-vehicle(s) to the proposed Formation Position first. It will lead to the change of
nodes in Grα, as it will add or delete actions. In such a case the temporal constraints will not be changed but Smith
needs to predict how long it will take for the ego-vehicle(s) to get to the Formation Position (duration and proposed
finish time of β1) and check if the duration and proposed finish time of β1 are consistent with the temporal
constraints in Grα..

2.2 Role Matching Procedure
Role Matching has three steps: Matching of Formation Position (Fig. 3), Matching of vehicle model and Matching of
Grα. When Smith needs to find a vehicle/flock to perform some Assignments, he will first find a vehicle that is near
the proposed Formation Position (flocks are usually used for ambient traffic flow). There are now two versions of
Formation Position available for Smith. Fig. 3a is the original version for all circumstances while Fig. 3b is the
version for rural road. For instance, if an Assignment needs a leader, the “Formation Position” of that Assignment
will be specified as “L” in SDF (according to Fig 3b). Smith will try to find a vehicle that is near position “L”, which
means that he will first try to find a vehicle in position “L”; if no vehicle is found, then try “LL”, “NSL” etc. Smith will
then match the vehicle model with specified parameters regarding its model, its manufacturer, its max speed etc. If
he can find a right vehicle in “L”, it will proceed to Matching of Grα, if not, he will try other near positions such as
“NSL” or “LL” until he finds one. If Smith fails in finding a vehicle/flock, it will broadcast “Failure” or request vehicles
from SMM (Scenario Management Module), which will be discussed in section 4. The last step is the Matching of
Grα, which is to use the values of vehicle parameters to re-evaluate the time Smith needs to navigate the ego-
vehicle(s) to the proposed position and see if the time is consistent with Grα.

2.3 Regulating Procedure
At present, only three behaviours are adopted: lane changing, overtaking and speed adaption. Lane changing is
used to get to the lane that the Formation Position requires while overtaking is used to overtake slower vehicles
and get to the Formation Position in time. Speed adaptation is mainly used to make Smith obey the speed limit and
maintain a realistic speed trajectory when performing a turning movement. The Regulating procedure is only active
in the phase of β1, which is to generate formation for Assignment-actions. In the phase of β2, which is to perform
Assignment-actions, lane changing and overtaking are both forbidden while speed-adaptation is allowed if there is
no speed requirement in Assignment-actions.

3. Experiment and Results
An experiment was designed to see if NAUSEA can provide proposed output and if the implementation – Smith -
can work properly and stably. The desktop version of UoLDS (University of Leeds Driving Simulator) [Jam1], which
is called Babysim has been used to conduct the experiment. A laptop is used to run Smith. It is equipped with an
Intel® T2130 CPU and 2GB of memory and runs Ubuntu Linux 11.10 32bit. Communication between Babysim and
Smith is based on a wired 10Mb hub. A video camera is also used to record the animation of the screen so that the
driving activities can be recorded, which are needed for future examination or papers/presentations. The
experiment contains one scenario and two phases, which are described in the following sections.

3.1 Experiment Description
3.2.1 Scenario Description
The scenario contains a 13.7 miles long (22 km) rural road with some curved road segments. There are three
villages and five junctions along the road. The speed limit on the open road is 60 mph but in villages the speed limit
is 30 mph. Assignments of “Coherence”, “Layby” and “Gap Acceptance” are supposed to provide measurements
regarding driver’s behaviours but for the purpose of this experiment, these measures have been ignored. Because

Driving Simulation Conference 2012 Autonomous Local Manoeuvre and Scenario Orchestration

Paper Number -4- DSC’12

participants may sabotage Assignments and Smith can generate extra actions to compensate the Assignments,
participants may experience less than or more than three Assignments, which depends on whether or not the failed
Assignment can cause the whole scenario to fail and whether it can be reattempted. Moreover, the temporal
constraints of the scenario are generated by manual estimation at present. Assignments that a participant could
experience are listed below and illustrated in Fig. 5.

• Assignment of Acc-BL: Acc-BL is short for “Accelerate and Be Participant’s Leader”. It is the first Assignment
that participants experience. This Assignment needs a Formation Position of “L”, so vehicle with the id “1” is
chosen in the beginning as the ego-vehicle. Smith will accelerate vehicle 1 and maintain speed of 30 mph;

• Assignment of CL-BL: CL-BL is short for “Change Lane and Be Participant’s Leader”. It is actually an action
generated by the Regulating Layer in order to navigate vehicle 2 to the position of “L” so that the participant can
have a leader after he/she has failed Acc-BL. Vehicle 2 is the ego-driver in this Assignment. The failure of CL-
BL will lead to the failure of the whole scenario;

• Assignment of “Coherence”: After the adoption of a leader by performing Acc-BL or CL-BL, the Coherence
Assignment will start and last for 50 seconds6. During this period, the ego-vehicle (vehicle 1 or vehicle 2) will be
the leader and varies its speed according to a sinusoid. The participant will be told to match the leader’s speed
and maintain his/her favoured distance to the leader. Two sub-Assignments can be generated: Coherence1
and Coherence2, which are short for “Coherence performed by vehicle 1” and “Coherence performed by
vehicle 2” respectively. The failure of Coherence will lead to the failure of the whole scenario;

• Assignment of “Free Traffic Flow”: This Assignment is used to generate a traffic flow in order to prevent the
participant from overtaking but because the traffic flow is of low density, the participant can still have chance to
overtake. This Assignment starts with “Coherence” and stops in “Layby” that is elaborated next;

• Assignment of “Layby”: In this Assignment, Smith needs to find a vehicle and then pull it out suddenly without
indication, in which case the participant may accidently overtake the vehicle. Vehicle 3 is chosen as the ego-
vehicle first and if it fails, vehicle 4 will be chosen, so two sub-Assignments can be generated as well: Layby-V3
and Layby-V4, which are short for “Layby performed by vehicle 3” and “Layby performed by vehicle 4”
respectively. The failure of Layby-V4 will lead to the failure of the whole scenario;

• Assignment of “Gap Acceptance”: After the Layby Assignment, the participant will arrive at a junction with
oncoming vehicles whose gap is increasing; he/she is instructed to turn right if the gap is considered safe by
him/her. This Assignment is not supposed to fail so the participant will be instructed to turn right.

If we call a Test Case a set of Assignments that a participant will experience or sabotage and the
corresponding information Smith receives, there are in total 9 Test Cases in this experiment. This number is
generated by considering all the combinations of the seven Assignments and the fact that 1) failures of
Coherence1/Coherence2/Layby-V4/CL-BL will lead to the failure of the whole scenario and 2) some Test Cases
are actually the same, for instance, in order to perform CL-BL, Acc-BL should be failed first. Hence, the Test Case
of “fail Acc-BL and then fail CL-BL” is actually the Test Case of “fail CL-BL”. See Table 3 for all the 9 Test Cases
and corresponding desired output. From Table 3, we can see that in the normal Test Case, Acc-BL should be
triggered (M: √) and succeed (S: √). Failure condition of Acc-BL should not be triggered (F: ×). Coherence1 should
be triggered and succeed by considering its duration (S: D). Failure condition of Coherence1 should not be
triggered. Layby-V3 should be triggered and succeed by considering its duration. Failure condition of Layby-V3
should not be triggered. Gap Acceptance and Free Traffic Flow should both be triggered and since there are no
success or failure condition in this Assignment (S: N; F: N), Smith will not check the status of the Assignment after
they are triggered. Moreover, in the Normal Test Case, CL-BL, Coherence2 and Layby-V4 are not triggered.

3.2.2 Phase One
In Phase one, five participants were recruited within the Institute for Transport Studies (ITS) to act as software
testers. All of them are male and four of them have taken part in a driving simulation experiment before. Every
participant will drive in the scenario twice or three times in two rounds. In round one, the participant will try Test
Case 1, which means the participant should drive normally and experience Acc-BL, Coherence1, Layby-V3 and
Gap Acceptance in sequence. In round two, the participant will try two other Test Cases randomly in two sections
and overtaking the leader may be allowed according to the requirement of each Test Case. The participant may try
Test Case 3, 4, 7 in section one and 2,5,6,8,9 in section two, so two participants will not try any Test Case in
section one. The rule is that the Test Case that has been tried by the last participant will not be considered for the
next participant. The Test Cases each participant has tried can be found in Table 1. The input to Smith, which is
the information of every vehicle in the Babysim was recorded in a Data-Log during each participant’s drive.

3.2.3 Phase Two

6It has been set to 70 seconds in temporal constraints in order to make sure that Smith has enough time to monitor the
Assignment and will not trigger failure accidentally. 50 seconds is used in the Assignment definition for success condition.

Driving Simulation Conference 2012 Autonomous Local Manoeuvre and Scenario Orchestration

Paper Number -5- DSC’12

In Phase two, an automatic software test is performed by using the Data-Log recorded in Phase one. In this phase,
every record of Test Case is played by a Log player in order to re-construct every participant’s drive. Every log has
been played 10 times, so there are in total 90 tests (9 × 10). Test of the Normal Test Case used the Data-Log of
participant one in round one. The time that Smith makes the decision has been recorded in each test and is termed
“Order Release time”.

3.2 Results
Increase in the number of Assignments and the number of action Recipe for a high-level action will certainly make
Smith slower and may cause failure due to the complexity of the Plan Evaluation Procedure. However,
Assignments can be distributed to several Smiths and the number of action Recipe can be restricted, so we can
safely ignore the size effect. Although the time spent on decision-making is platform-dependent, it can still reflect
whether Smith is working stably as in a specific platform with the same scenario, Smith should spend almost the
same time to trigger the same Assignment so that every participant can experience the same context when the
same Assignment is triggered.

3.3.1 Can Smith Generate the Desired Output? (Is the Algorithm Working?)
In Phase one, Smith generated the desired output (13 Participant-based tests) and in phase two, Smith generated
the desired output with a success rate of 100% in all the 90 tests. Moreover, the plan evaluation procedure is also
working properly and its output can be found in Fig. 6, Fig. 6a shows the output in the Normal Test Case and Fig.
6b shows the output when Acc-BL fails (Test Case 2,3,7,8,9). Numbers in the graph are temporal constraints, e.g.,
255 means that “Coherence1”/ “Coherence2” should start before 255 seconds from the start of the simulation.

3.3.2 How well did Smith Generate the Output? (Is the Implementation Good?)
Order lag is measured in Phase one by using the time that Babysim receives an order from Smith to minus the time
when Smith makes the decision. The latter is the time stamp of the package that makes the monitor become true
and Action Execution procedure is evoked. The result is shown in Table 2 and shows that Smith needs 2 ± 1
frame(s) to make decisions, which is supposed to be a reference as the time is a platform-dependent value.

3.3.3 Is Smith Stable?
The statistics description of the results is shown in Table 4 and the time value is all Babysim-based, e.g., a time
value of 300 means 300 seconds after the start of the Babysim simulation. It shows that Smith is not stable enough,
as the time point when he makes decision in the same test varies a lot from less than 1 frame to more than 10
frames compared to the mean order release time. Since there is no difference regarding algorithm or data structure
when performing the same Assignment on the same machine, the cause of the variance is the communication
mechanism used between the Perception and Cognition layers.

3.3.4 Comments from Participants
Participants were encouraged to give some general comments after their drive. Some of them have noticed that 1)
in Coherence1 and Cohehence2, the acceleration rate of the leader is relatively high; 2) vehicle 3 or vehicle 4 in
Layby-V3 or Layby V4 pulls out without advance indications (although they are designed to be a surprise
Assignment) and 3) Lane changing trajectory of the vehicle is not smooth enough.

Hence, SAIL/NAUSEA is working properly as desired but the implementation of Smith needs enhancement
regarding the communication mechanism between the Perception and Cognition layers. Moreover, the behaviours
need enhancement as well although Smith is not responsible for the low-level trajectory generation, e.g., the
trajectory of lane changing.

4. Conclusions
In this paper, a decision-making algorithm called NAUSEA has been designed for SAIL to solve the three problems
and deal with “failures”. SAIL/NAUSEA is working properly with a 100% success rate but the implementation needs
enhancement. This driver model is a component of a framework called SOAV (Scenario Orchestration with
Autonomous simulated Vehicles), which is designed to be an architecture that can orchestrate scenarios with
autonomous vehicles, so that participants can experience rich, appropriate and reproducible scenarios. For
scenario description, OSO and SDF can standardize scenarios and make them shareable among different
simulators; for scenario interpretation, the driver model can naturally combine autonomous actions and scenario
actions; for scenario execution, a Scenario Management Module (SMM) is proposed to cooperate with the driver
and meet any macroscopic requirement, including traffic flow generation and vehicle creation/destruction.

A further experiment will be carried out in order to test SOAV. The enhancement for the next experiment will
be: 1) adoption of a new communication mechanism between Perception and Cognition; 2) adoption of multi-
triggers so that Smith can monitor more than one state variable in the simulation; 3) adoption of a Scenario

Driving Simulation Conference 2012 Autonomous Local Manoeuvre and Scenario Orchestration

Paper Number -6- DSC’12

Management Module (SMM) so that vehicles can be added/destroyed dynamically according to traffic flow or
Assignment requirements, in which case actor preparation can be tested dynamically and 4) adoption of dynamic
temporal constraints based on the work from [Ols1].

SAIL adopted a goal-oriented hierarchical architecture, which can be used to assist the design of in-vehicle
devices and adopt findings in related areas, such as driver model, driving behaviour, psychology etc. NAUSEA can
also be used when self-management is needed for goal-oriented decision-making. All data in this experiment
including OSO, SDF, videos and original data logs are available upon request.

5. Acknowledgement
Thanks to China Scholarship Council and University of Leeds for funding this research and to people in ITS
(alphabetically): Dan Gillett, Daz Hibberd, Mojtaba Moharrer for their kind help before the experiments. Special
thanks to Tony Horrobin (ITS) who gave me many suggestions ranging from scenario preparation to software test.

6. References
[Age1] Agent Smith(2011). Agent Smith. Retrieved October 16, 2011. http://en.wikipedia.org/wiki/ AgentSmith

[Eng1] Engström, J. and Hollnagel, E. (2007). A General Conceptual Framework for Modelling Behavioural Effects
of Driver Support Functions. In Cacciabue, P. C (Editor), Modelling Driver Behaviour in Automotive Environment
(pp. 61 - 84). Springer.

[Had1] Hadad, M., Kraus, S., Gal, Y. and Lin, R.(2003).Temporal Reasoning For A Collaborative Planning Agent In
A Dynamic Environment. Annals of Mathematics and Artificial Intelligence, vol37, pp. 331-379.

[Jam1] Jamson, A. H., Horrobin, A. J., and Auckland, R. A.(2007). Whatever Happened to the LADS? Design and
Development of the New University of Leeds Driving Simulator. In Proceedings of Driving Simulation Conference
America (DSCNA), DSC’2007.

[Kea1] Kearney, J., Willemsen, P., Donikian, S., Devillers, F., de Beaulieu, C., and Rennes, F. (1999). Scenario
languages for driving simulation. In Proceedings of Driving Simulation Conference,DSC’99, pages 377–393.

[Ols1] Olstam, J., Espi, S., Mardh, S., Jansson, J. and Lundgren, J. (2011) An algorithm for Combining
Autonomous Vehicles and Controlled Events in Driving Simulator Experiments. Transportation Research Part C:
Emerging Technologies, Elsevier.

[Pap1] Papelis, Y., Ahmad, O., and Schikore, M. (2001). Scenario definition and control for the national advanced
driving simulator. In International Conference on the Enhanced Safety of Vehicles (ESV). SAE International.

[The1] The Matrix (franchise) (2011). The Matrix (franchise).Retrieved on February 2, 2012.
http://en.wikipedia.org/wiki/The_Matrix_(franchise)

[Xio1] Xiong, Z., Carsten, O., Cohn, A.G. and Jamson, H. (2012). Driving with Smith: A Scenario-Aware Driver
Model for Driving Simulation. To appear in the Proceedings of BRIMS 2012, March 2012.

Driving Simulation Conference 2012 Autonomous Local Manoeuvre and Scenario Orchestration

Paper Number -7- DSC’12

Fig.2 Algorithm Description of NAUSEA

 Fig. 1. Scenario-Aware Driver Model

 (a)

(b)

Fig. 3. Formation Position in SAIL/NAUSEA

Fig. 4. Action Recipe for Smith (Perform-sceanrio)

Fig. 5. Illustration of Scenario

 Fig. 6. Output of Plan Evaluation Procedure in
Normal (a) and Failure (b) Test Case

(a)

(b)

Driving Simulation Conference 2012 Autonomous Local Manoeuvre and Scenario Orchestration

M: Monitor

S: Success Condition

F: Failure Condition

√ : Triggered

× : Not Triggered

 N : Not Available

 D : Duration-Based Success
Condition

Participant
No.

Test Case
in Round

One

Test Case in Round Two

Section One Section Two

1 1 7 9

2 1 8

3 1 4 2

4 1 6

5 1 3 5

Minimum Maximum Mean Std. Deviation

.0000163 .1000000 .031511634 .0148830995

Test Case Total
Trigger

Number/
Order

Number

Acc-BL CL-BL Coherence1 Coherence2 Layby-V3 Layby-V4 Gap
Acceptance

Free
Traffic
Flow

M S F M S F M S F M S F M S F M S F M S F M S F

1 Normal 6/5 √ √ × √ D × √ D × √ N N √ N N

2 Fail Acc-BL 8/6 √ × √ √ √ × √ D × √ D × √ N N √ N N

3 Fail CL-BL 4/2 √ × √ √ × √

4 Fail Coherence(1) 5/3 √ √ × √ × √ √ N N

5 Fail Layby-V3 8/6 √ √ × √ D × √ × √ √ D × √ N N √ N N

6 Fail Layby-V4 8/5 √ √ × √ D × √ × √ √ × √ √ N N

7 Fail Acc-BL and
Coherence2

7/4 √ × √ √ √ × √ × √ √ N N

8 Fail Acc-BL and
Layby-V4

10/6 √ × √ √ √ × √ D × √ × √ √ × √ √ N N

9 Fail Acc-BL and
Layby-V3

10/7 √ × √ √ √ × √ D × √ × √ √ D × √ N N √ N N

Test
Case

Coherence1 Coherence2 Layby-V3 Layby-V4 Gap Acceptance

Min Max Mean Std.
Deviation

Min Max Mean Std.
Deviation

Min Max Mean Std.
Deviation

Min Max Mean Std.
Deviation

Min Max Mean Std.
Deviation

1 247.
067

247.
183

247.
108

0.
037

 710.
400

710.
433

710.
414

0.
012

 869.
350

869.
367

869.
361

0.
009

2 200.
350

200.
917

200.
541

0.
177

661.4
67

661.
567

661.
500

0.
031

 822.
350

822.
383

822.
365

0.
012

3

4 244.
000

244.
333

244.
074

0.
103

5 238.
317

238.
533

238.
386

0.
070

 699.
617

699.
650

699.
627

0.
011

808.
500

808.
533

808.
511

0.
011

853.
533

853.
583

853.
564

0.
015

6 238.
933

239.
033

238.
971

0.
038

 693.
333

693.
367

693.
342

0.
012

796.
250

796.
267

796.
258

0.
009

7 181.
317

181.
983

181.
574

0.
194

8 215.
167

215.
800

215.
352

0.
186

674.
783

674.
833

674.
794

0.
015

795.
033

795.
067

795.
042

0.
012

9 195.
817

196.
583

196.
147

0.
269

662.
850

662.
917

662.
882

0.
020

784.
533

784.
633

784.
562

0.
030

829.
533

829.
683

829.
618

0.
040

Table 1. Test Case Tried by Every Participant Table 2. Statistics of Order Lag in Phase One

Table 3. Desired Output of Each Test Case

Table 4. Statistics of Order Release Time in Phase Two

