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Abstract – This paper studies the utility of 

numerical optimal control (NOC) in the driving 

simulator motion cueing problem. In this way it 

is possible to examine how workspace limits 

affect the cueing signal. A comparative study 

against Linear Quadratic Gaussian (LQG) and 

model predictive control (MPC) algorithms shows 

that false cues are a result not only of platform 

physical limitations, but also the methods 

themselves. A scheme is then devised whereby 

miscues can be manipulated to achieve small 

acceleration signals that are independent of the 

onset cueing. The concept is initially tested in a 

numerical optimal control framework, and 

having improved the miscue performance, a 

similar approach is applied to the other 

algorithms. These new methods produce 

attenuated miscues, facilitate stronger onset 

cueing and make better use of the workspace. 

Key words: Motion cueing, numerical optimal 

control 

1. Introduction 

The critical limitations of all driving simulators 

are the bandwidth and workspace constraints of 

the motion platform. Moving platforms 

simulators were introduced to stimulate the 

drivers' inertial sensors (vestibular system), thus 

enhancing the realism of the driving experience 

and providing a better understanding of the 

vehicle's behaviour during braking and 

cornering.  

The exact replication of the vehicle’s 

accelerations is prevented by the motion 

platform constraints. Hence, motion cueing 

algorithms were developed to determine a 

simulator reference that approximates the 

acceleration and thereby improves the 

simulation. 

There are various motion cueing design 

techniques, the oldest being the classical 

frequency-shaping algorithm. In this approach 

the vehicle accelerations are high-pass filtered 

to generate simulator references. From a 

workspace perspective the lower frequency 

motions that correspond to large displacements 

are removed. With appropriate filter parameter 

choices, the platform excursions will remain 

within the limits, although this is only achieved 

indirectly. From a driver’s perspective the 

initial changes in acceleration, such as at the 

onset of braking, are important for 

understanding the vehicle behaviour. The lack 

of sustained cues later in a manoeuvre is 

relatively less critical. 

Another widely used algorithm is based on LQG 

theory and includes a model of the human 

vestibular system. The resulting high-pass filter 

is designed to minimise the difference between 

the acceleration sensed by a car driver and 

driver in the simulator. A more recent approach 

uses MPC to determine the simulator input 

reference, while simultaneously reducing 

perceived acceleration error and directly 

respecting the workspace constraints. 

All of these established approaches have 

common features: an onset cue, an 

acceleration washing and a false cue 

(acceleration in the wrong direction) that 

prevents the platform hitting the workspace 

limits. While broadly similar, the methods differ 

in relation to the detailed production of the 

above behaviours. An aim of this paper is to 

determine how the resulting cueing signal is 

affected by the algorithm choice and platform 

constraints. Additionally, there should be an 

identification of the limitations caused by each 

of these two factors. 

In order to compare these methods, a baseline 

system that determines the ‘best achievable’ 

cues for a given platform, is needed. To this 

end, numerical optimal control is used to 

determine an open-loop acceleration input for 
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the simulator over a typical driving scenario. 

This system is not constrained to be linear or 

causal, and from the result, it is possible to 

understand the relationship between the 

platform constraints and the achievable 

cues/miscues. In the NOC formulation the 

workspace constraints are recognised explicitly. 

The NOC results can then be used as a basis for 

comparison with the other methods and through 

this, the underlying limitations of each approach 

can be identified and understood. 

This should provide clarity with regards to the 

available room for improvement and provide 

insight into how better cueing can be achieved. 

These ideas are then used to develop a new 

strategy that aims to improve the false cue 

characteristics of more traditional algorithms. An 

initial study is conducted in the NOC framework, 

and given the promising results, a similar 

approach is implemented for the MPC and LQG 

cases. 

The paper is laid out as follows: In Section 2 the 

various cueing techniques are described. In 

Section 3 the results of the non-linear optimal 

control are examined and then compared with 

the other algorithms. In Section 4 the new 

technique is described for each method with 

comparative results provided. 

2. Problem Background 

The driving simulator involved in this research is 

used in Formula 1 racing applications. Race 

driving is characterised by large-magnitude 

accelerations that cannot be reproduced or 

sustained in a confined simulator environment. 

As a result, the motion cueing problem is 

challenging and critical, since only a small 

portion of the actual acceleration is supplied to 

the driver, and the quality of the simulation is 

heavily reliant on how this is determined. 

A commonly employed technique in road car and 

flight simulators is tilt-coordination. This uses 

pitch and roll angles to provide a feeling of 

sustained acceleration in lateral and longitudinal 

directions. This, however, only applies when the 

platform can be rotated sufficiently slowly. A 

second feature of race driving is the fast 

dynamics, which render this technique useless, 

further increasing the difficultly of the problem. 

Despite the numerous complications associated 

with the closed-circuit racing context, there are 

also some advantages. For a given track, the 

accelerations on each lap are similar, since the 

drivers tend to be consistent in terms of their 

driving. This results in a high level of 

predictability, a characteristic that lends itself to 

prepositioning [Wei1]. This technique allows 

the platform to be moved towards an extreme 

of the workspace (instead of washing out to 

the centre) in preparation for the next 

manoeuvre (e.g. braking or strong lateral 

acceleration); this effectively doubles the 

available workspace. 

Finally, the test drivers themselves are highly 

skilled, and will tolerate a lack of realism. 

However, there are cues they need to 

understand the car behaviour, and it is 

important that these are delivered. 

2.1. Simulator Platform 

A conventional 6 degrees-of-freedom (DOF) 

hexapod is used in this application. It is moved 

by changing the length of the legs, and the 

physical constraints of the system 

(acceleration, velocity and displacement) arise 

from the specifications of these actuators. 

In motion cueing, it is necessary to examine 

whether an acceleration trajectory demand 

exceeds the platform’s capability. To achieve 

this, movements in an inertial reference frame 

need to be transformed into corresponding 

changes in the leg lengths. The development of 

these kinematic equations can be found in 

[Hel1], and the resulting hexapod model is 

used in the algorithms. 

3. Motion Cueing Algorithms 

3.1. Linear Quadratic Gauss 

The application of LQG theory to the design of 

motion cueing filters was developed by [Siv1], 

[Rei1] and [Tel1]. The details of this method 

are described in those papers, and 

consequently only a brief summary is provided 

here. 

The human vestibular system can be modelled 

as a transfer function that takes as input the 

experienced accelerations, and produces as 

output the driver-perceived accelerations. In 

motion cueing the aim is to make the 

difference between the acceleration sensed by 

the simulator driver and that sensed by a 

driver in a real-car as small as possible. 

However, since the simulator has physical 

limits, only a fraction of the car’s acceleration 

can be reproduced. A linear filter, F(s) is used 

to process the vehicle acceleration to produce a 

simulator motion demand. The LQG approach 

computes the optimal F(s) such that the 

difference between the output of the real car 

and simulator drivers’ vestibular models is 

minimised. The LQG cost function is defined as 

follows: 
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where as, vs and ss are simulator acceleration, 

velocity and displacement, respectively, and e is 

the error in the perceived acceleration. The 

inclusion of these four terms, requires the LQG 

to minimise both simulator motion and 

vestibular error simultaneously. By tuning the 

weights in the cost function (using trial-and-

error), a compromise between these 

contradictory aims can be found such that the 

simulator stays within the workspace bounds. 

3.2. Model Predictive Control 

The use of MPC in motion cueing is described in 

detail in [Gar1],[Bas1],[Dag1], and, as before, 

only the pertinent points are provided here. 

MPC involves the formulation of an optimisation 

problem, with constraints, that is then converted 

into a quadratic programming (QP) problem and 

solved using any number of techniques. 

The core of any optimisation problem is the cost 

function, which is given in (2). The input u(t) is 

the simulator acceleration demand, and this is to 

be determined by the solver. The vector y(t) is 

defined in (4), and R and Q are weighting terms. 
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The first constraint (3) represents the system 

dynamics, and contains the vestibular system 

and linearised platform models. From the input 

(platform acceleration: u(t)) the system states 

(x(t)) can be computed. These include the 

sensed acceleration in the simulator, the 

vestibular states and the velocity and 

displacement of the platform actuators. 

The vector y(t) is representative of the output to 

be minimised and is calculated as the difference 

between the system states and a given 

reference (xref(t)). This reference contains the 

vestibular states, accelerations sensed in the 

real car, and components that correspond to the 

actuator neutral velocity (i.e. 0 m/s) and length. 

A non-zero output therefore occurs when the 

sensed accelerations do not match, and the 

platform moves, thus, similar to the LQG 

approach, both perception error and platform 

motion are penalised. 

A reference acceleration signal is required over 

the control horizon (HP). Either a prediction of 

the future acceleration is needed, or, this can 

be assumed constant, as given in (5). 

Constraints (6), (7) and (8) are a direct result 

of the actuator acceleration, velocity and 

displacement limits. 

Finally, the input u(t) is computed over the 

control horizon (HU, where HU    P) and is then 

assumed to be zero over the rest of the 

prediction horizon (9). 

The optimisation problem is solved at every 

time step, but only the input computed for the 

current step (i=0) is applied to the simulator. 

 

3.3. Numerical Optimal Control 

3.3.1. Theory 

An optimal control calculation computes the 

state and control vectors associated with a 

system in order to minimise a performance 

index [Bet1]. The cost can be expressed in 

Bolza form, and is given by: 
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The system constraints are described by: 
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where t0  t  tf is the optimisation interval with 

tf either fixed, or free to be optimised and 

         
 and          

 are the state and 

control vectors respectively. The vector-valued 

function          
 describes the system 

dynamics. The vector functions           , 

           and  
 
           define the equality, 

inequality and boundary constraints for the 

system. The scalar function l(·) is the stage 

cost that is a function of the state and the 

controls. 

Direct methods are used to convert the infinite-

dimensional optimal control problem into a 

finite-dimensional optimisation problem with 

algebraic constraints; a nonlinear programming 

problem (NLP). In this application GPOPS II is 

used to solve the NOC problem. 
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3.3.2. Application to Motion Cueing 

The motion cueing optimal control problem is 

defined with the following performance index 

and constraints: 

   ∫                    
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 ̇       )       ) (13) 
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The control input, u(t), is the simulator 

acceleration and is constrained by the actuator 

capabilities (14). This acceleration demand is 

used to compute the system states, x(t), from 

the system dynamics described in (13), which 

include the vestibular model, and the nonlinear 

hexapod kinematic equations. The actuator 

velocity and displacement are therefore 

components of the state and can be limited in 

(15) and (16). The acceleration sensed in the 

simulator âsim(t), required in cost function, is 

also a system state. 

Finally, a reference which is the sensed 

acceleration in a real car, âref(t), is required over 

the optimisation interval (for example a lap of a 

race track). The optimal control calculation 

computes the simulator motion demand over the 

interval in order to minimise the integral of the 

squared perception error. 

4. Comparison of Cueing Techniques 

Each of the above algorithms is implemented for 

the longitudinal freedom during a typical braking 

manoeuvre. The results from these are 

discussed, beginning with the numerical optimal 

control as a basis for comparison. 

4.1. Numerical Optimal Control 

The simulator acceleration demand computed by 

the NOC solver is shown in Figure 1 together 

with the corresponding platform velocity and 

displacement. The platform has been 

constrained to begin the manoeuvre at the front 

of the workspace and end it at the rear; 

effectively prepositioning it. The acceleration 

signal will produce the minimum error as defined 

in the cost function, and it is in no way 

constrained to be a linearly filtered version of 

the reference. 

This result can be used to draw conclusions 

about the effects of the workspace on the cueing 

fidelity. Firstly, by observing the velocity signal, 

it can be seen that this, and not the 

displacement, limits the duration of the 

acceleration signal; the velocity limit is reached 

before the workspace limit. Secondly, the  

 
Figure 1 Simulator acceleration, velocity and position 

(dotted lines) demands computed by the three 
algorithms. 

miscue to slow the platform is delayed until the 

braking acceleration has decreased in 

magnitude. This will result in minimal 

acceleration error and the platform will not 

violate the constraints. 

4.2. Linear Quadratic Gauss 

The results of the LQG approach vary 

depending on the values of the weighting 

parameters. Adjusting these values is used not 

only to constrain the platform to move within 

the workspace, but also to shape the 

acceleration signal in terms of strength and 

duration of onset cue. In order to compare the 

result with the NOC, the LQG is tuned to have 

a similar cue to the optimal control; the results 

are shown in Figure 1. 

During the onset cue, the velocity once again 

approaches the constraint. It does not reach 

the limit however, because the LQG method is 

difficult to tune to use the full workspace 

exactly. After numerous iterations it is possible 

to design filters that come close to the 

workspace boundary. 

In the position demand, some prepositioning 

was assumed, and the platform is placed 

initially at the front of the workspace. 

The primary difference between the results of 

the two methods lies in the shape, and timing 

of the miscue. The LQG miscue immediately 

follows the onset cue and is of a higher 

magnitude than the NOC. The shape and 

duration of this false cue are a direct result of 

using a linear washout filter. This miscue 
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cannot be adjusted without changing the shape 

of the onset cue as well. The stronger miscue 

results in the platform velocity being quickly 

reduced to zero, and the platform not utilising 

the full workspace to slow down. 

4.3. Model Predictive Control 

The MPC cueing problem has more parameters 

that require adjusting in the tuning process, 

since not only the weighting vectors can change, 

but also the length of the control and prediction 

horizons. 

Figure 1 shows the results of the MPC with a 

control horizon equal to a prediction horizon of 

20ms. Since the platform bounds are included as 

limits in the problem, the workspace is fully 

utilised. 

The results of this are similar to the NOC 

solution, which is to be expected. If it is 

assumed that the reference signal is known for 

the duration of the braking manoeuvre and the 

control and prediction horizons are set to the 

whole length of this, the two problems become 

equivalent (when the plant is linear). The MPC 

approach differs from the NOC because the look 

ahead is limited, and the reference is assumed 

constant in the future. 

The key factor in the MPC framework is that the 

time over which the input is determined can be 

less than the time over which the system 

dynamics are solved. So, in an extreme 

example, if the control is only computed at one 

time step, and the prediction horizon is 10 steps, 

then the only way the QP solver can minimise 

the cost is by changing the input at the first 

step. During braking, the perception error is 

minimised by demanding the maximum 

allowable acceleration at the first time step. 

Changing the length of the prediction horizon 

will affect how soon the MPC will determine that 

the velocity constraints are going to be violated, 

and this affects how sharply the acceleration is 

washed out. By adjusting the two horizon 

lengths the onset cue can be tuned to be both 

strong and smooth. 

Once the platform has reached its maximum 

velocity, that constraint becomes active and 

there is no means to reduce the error. At this 

point, slowing the platform will only increase the 

perception error, so it is undesirable. 

When the platform approaches the edge of the 

workspace the displacement constraint also 

becomes active and the platform has to be 

slowed down. The length of the prediction 

horizon determines how soon the platform starts 

decelerating, and the length of the control 

horizon affects how strong the miscue is. If the 

control horizon is short with respect to the 

prediction horizon, then naturally a strong 

miscue is needed since the input is only non-

zero for a fraction of the prediction horizon. 

Unfortunately, a longer prediction horizon that 

will improve the miscues will necessarily also 

affect the onset cue – making it weaker. Thus, 

a compromise is needed to produce a good 

onset cue and an acceptable miscue. 

4.4. Remarks 

The comparative study of these 3 motion 

cueing algorithms has made certain things 

apparent. Firstly, the shape and strength of the 

miscue is dominated by the platform velocity 

constraint. This physical limit cannot be 

avoided and so the onset can be made 

stronger, but then must be shorter to prevent 

the platform velocity saturation. 

Secondly, the miscues that slow the platform 

as it approaches the limits are a by-product of 

the technique employed. Neither LQG nor MPC 

achieve as smaller miscue as the NOC method. 

This highlights the need for an alternative 

miscuing strategy, since it is physically possible 

to improve them. 

Considering these two issues in turn: during 

onset cueing the aim is to reduce the 

perception error, however, during miscuing the 

platform acceleration should be minimised. 

Ideally, these two problems should be 

addressed separately so that they can be tuned 

and adjusted independently. The next section 

of this work examines the implementation of 

this idea in the various strategies to determine 

if, through this, the false cues can be 

noticeably improved. 

5. New Miscuing Strategy 

5.1. Numerical Optimal Control 

5.1.1. Implementation 

The NOC method is the easiest framework in 

which to implement changes in the cueing 

strategy, and analyse what improvements can 

be made that are physically possible. 

Consequently, the new miscuing idea is applied 

and tested first in this approach. 

A new performance index is given in (17). This 

function is time-varying and non-linear. 

   ∫     
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         (          ))   (18) 



Driving Simulation Conference 2014  An Algorithm for False Cue Reduction and Prepositioning 

Paper number 14 - 14.6 - DSC’14 

The function w(t) is a smooth switch that 

changes from 1 to 0 at time t0. The sharpness of 

the switch is controlled using the parameter k. 

The term (1-w(t)) is the inverted switch, i.e. it 

starts at zero and switches to 1 at t0. The first 

term in the cost function contains the product of 

the perception error and the switch, and the 

second term, the product of the acceleration and 

the inverted switch. By defining the cost as 

such, during the first t0 seconds of the 

manoeuvre, only the perception error will be 

minimised, but after t0 seconds, the perception 

error will be ignored and the platform 

acceleration minimised. The weighting term β is 

included to place more importance on the onset 

cueing than the miscuing; the resulting miscue 

should not be considered when designing the 

onset cue – only the velocity constraint should 

affect how the cue is shaped.  

5.1.2. Results 

The results of the braking manoeuvre applied to 

the newly defined optimal control are shown in 

Figure 5 below. The onset cue was designed to 

be strong, reaching the maximum platform 

acceleration, and the switching time was chosen 

to be after the velocity limit was saturated. 

The improvement in the acceleration miscue is 

apparent. The acceleration signal is very smooth 

and the miscue achieves a maximum value of 

2m/s2. This false cue can be further reduced by 

removing the constraint that the platform must 

finish at the rear of the workspace; however, the 

prepositioning characteristic is more desirable 

than the slight improvement. 

Based on the success of this, the idea was then 

applied in the MPC and LQG approaches. 

5.2. Model Predictive Control 

5.2.1. Implementation 

In order to improve the false cueing 

characteristics in the MPC framework the 

problem needs to be reformulated. At first it 

seems sensible to make adjustments to the MPC 

cost function to minimise only acceleration not 

perception error during miscuing. 

However, as mentioned previously, the choice of 

horizons affects the shape, magnitude and 

duration of the miscue. As also noted, the 

horizon cannot be tuned for best miscue without 

changing the onset cue. Unless, at different 

times in the braking manoeuvre, the horizons 

are changed. 

The principle is to complete the braking onset 

cue, and then, once the platform has reached 

the maximum velocity, the horizons are changed 

and the control input computed for this adjusted 

problem. This approach has numerous 

advantages. The MPC problem does not need 

to be reformulated as the cost function does 

not change, and it allows the miscue and onset 

cues to be tuned independently. 

5.2.2. Result 

Figure 5 shows the result of changing the 

horizons during the manoeuvre. The onset cue 

has been tuned for a stronger deceleration and 

the false cue has been tuned to be small in 

magnitude. It is worth noting that if the 

prediction horizon is too long during the miscue 

phase then the platform will not fully utilise the 

workspace. 

5.3. Linear Quadratic Gauss 

5.3.1. Available Miscue Reduction Techniques 

In the context of the LQG and classical filtering 

approaches other techniques have been 

developed to reduce the miscues. [Rey1] 

introduced an additional non-linear gain in the 

classical approach that reduced the magnitude 

of the miscues. This is powerful in the classical 

context where washout is performed by a 

subsequent filter. However, in the LQG method 

if the false cues are only gain reduced, then 

the platform will not stop. This can be 

remedied by adding an additional washout 

filter; however, any additional filtering will 

necessarily affect the onset cues as well. The 

aim needs to be to not only reduce the gain of 

the miscues, but also increase the duration and 

make full use of the available workspace. 

5.3.2. Implementation 

As it was concluded before, it is not possible to 

have one filter that is tuned to give both good 

onset and false cues. There are different 

requirements during each phase, so the LQG 

method is now extended to include two filters. 

The first is optimised to reduce sensation error 

during the onset cue and the other aims to 

reduce the acceleration during the false cueing 

stage. The first filter is designed using the 

standard LQG approach, and the second is 

detailed below. 

The objective during the miscuing phase is to 

move the platform to a target position (in 

preparation for the next manoeuvre), and 

finish with zero velocity. This can be achieved 

with a simple controller that feeds back the 

displacement error and the velocity. This 

formulation will drive the position to the given 

reference and the velocity to zero. A diagram 

of the controller is given in Figure 3 (this also 

includes bumpless transfer compensation that 

is still to be explained). The two error signals 
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are gained and summed to produce the 

acceleration reference. This is described by the 

Eq. 19, where aout, vout and sout are the platform 

acceleration, velocity and displacement demands 

respectively; sref is the desired platform position 

and K1 and K2 are the feedback gains. 

                     )            (19) 

Finally, it is not recommended simply to switch 

between two filters, because at a given time 

there is no guarantee that the states are the 

same, so there is a ‘bump’ in the output signal 

during switching. This is a well-documented 

problem and is overcome by using a bumpless-

transfer scheme. The idea of this is to include 

feedback around each of the filters that causes 

the inactive filter output to track that of the 

active filter. So, when switching occurs, both 

filters have the same output and no bump 

appears. The complete switching system is 

shown in Figure 2, and the details of the two 

bumpless transfer filters are described below. 

 
Figure 2 Complete scheme with LQG filter (F), 

bumpless transfer filter (Gm), and controller M(s) that 
contains bumpless transfer feedback. 

 
Figure 3 Diagram of controller to slow and preposition 

platform, with bumpless transfer compensator (K). 

The first problem is to ensure that the miscue 

controller tracks the LQG filter output. The 

inputs to the controller are velocity and position, 

and the output is acceleration, which can be 

integrated to give velocity. It is therefore 

required that the velocity signal of the miscue 

controller be the same as the platform velocity 

when the LQG filter is active. This is achieved 

using a simple form of bumpless-transfer 

[Edw1], the implementation of which is shown in 

Figure 3. The difference between the controller 

and simulator velocities is gained and added to 

the feedback loop, adjusting Eq. 19 to: 

                     )                             (20) 

This mechanism has an additional advantage. 

The output of the controller may produce 

velocity demands that exceed the platform 

limits, by including this additional feedback 

when the velocity saturates the controller 

output is forced to match the saturated signal 

and thus the platform acceleration demand 

remains sensible. 

A similar mechanism is required for the LQG 

filter so that when it is switched back in there 

is no bump. The simple gain technique did not 

produce satisfactory results, so an 
  optimisation framework, as introduced and  

described by [Edw1], was employed to design 

the feedback. 

The bumpless transfer system is described by 

Figure 4, where asim is the simulator 

acceleration demand, aout is the output 

acceleration of the LQG filter F(s) and aref is the 

input acceleration. The aim is to design a filter 

Gm(s) that minimises the error between the 

output acceleration and the actual platform 
acceleration. To formulate a sensible    

problem it is appropriate to minimise both the 

error and the output from the Gm(s) filter 

[Edw1]. 

 
Figure 4 Bumpless transfer feedback filter scheme, 

and the system recast in generalised regulator form. 

This problem can be recast in a generalised 

regulator format, where: 

    [  
  
  

]    [
               

  
] (21) 

                 (22) 

And w and u are given by : 

    [
      
    

] (23) 

                    (24) 

The resulting plant matrix P is given as: 

  [

            

  

   )   

|

        

 

    

] (25) 

From this formulation the optimal filter Gm(s) 

can be found using standard robust control 

algorithms. The parameters   and   are used 
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to weight the relative importance of the error 

and the magnitude of the output from the filter. 

5.3.3. Results 

The results from this approach are given in 

Figure 5, and show an improved miscue, and 

consequently, workspace usage. 

 
Figure 5 Simulator acceleration, velocity and position 

(dotted lines) demand calculated using the 3 methods 
with improved miscues. 

6. Future Work 

These techniques, having achieved good results 

in 1DOF, now need to be extended to multiple 

degrees of freedom. 

In the LQG and MPC cases, this needs to be 

applied in real-time. This requires additional pre-

processing of the track to estimate when the 

respective filters or horizons should be used. 

Finally, once implemented on the simulator the 

driver response will be the ultimate assessment 

of the improvement. 

7. Conclusion 

The use of numerical optimal control as a 

baseline system proved effective in determining 

the possible areas of improvement in the motion 

cueing. It was shown that although false cues 

are physically necessary, the magnitude and 

duration are a side-effect of tuning for good 

onset cues, and they can be improved while still 

respecting the platform physical limits. 

A need was identified for methods to separate 

the onset and false cue phases so that they can 

be tuned independently, rather than at the 

expense of each other. 

Different means of achieving this were 

suggested and tested for each algorithm. The 

results showed a marked improvement in the 

false cues, and allowed the desired cues to be 

tuned for a stronger onset. 
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